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Abstract: Computer simulations have been an integral part of the technical development process for a long time 
now. Industrial tribology is one of the last fields in which computer simulations have, until now, played no 
significant role. This is primarily due to the fact that investigating tribological phenomena requires considering 
all spatial scales from the macroscopic shape of the contact system down to the micro-scales. In the present paper, 
we give an overview of the previous work on the so-called method of reduction of dimensionality (MRD), which 
in our opinion, gives a key for the linking of the micro- and macro-scales in tribological simulations. 

MRD in contact mechanics is based on the mapping of some classes of three-dimensional contact problems 
onto one-dimensional contacts with elastic foundations. The equivalence of three-dimensional systems to those 
of one-dimension is valid for relations of the indentation depth and the contact force and in some cases for the 
contact area. For arbitrary bodies of revolution, MRD is exact and provides a sort of “pocket edition” of contact 
mechanics, giving the possibility of deriving any result of classical contact mechanics with or without adhesion 
in a very simple way. 

A tangential contact problem with and without creep can also be mapped exactly to a one-dimensional system. 
It can be shown that the reduction method is applicable to contacts of linear visco-elastic bodies as well as to 
thermal effects in contacts. The method was further validated for randomly rough self-affine surfaces through 
comparison with direct 3D simulations. 

MRD means a huge reduction of computational time for the simulation of contact and friction between rough 
surfaces accounting for complicated rheology and adhesion. In MRD, not only is the dimension of the space 
reduced from three to one, but the resulting degrees of freedom are independent (like normal modes in the 
theory of oscillations). Because of this independence, the method is predestinated for parallel calculation on 
graphic cards, which brings further acceleration. The method opens completely new possibilities in combining 
microscopic contact mechanics with the simulation of macroscopic system dynamics without determining the 
“law of friction” as an intermediate step. 
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1  Introduction 

We live in an age of information technology. Numerical 
simulation methods have become a solid foundation 
for technological development processes. In many 

fields, such as structures and fluid dynamics, 
numerical methods can no longer be overlooked. 
Tribology is one of the last bastions of engineering 
sciences where numerical methods have been as good 
as non-existent in development and optimization. 
When dealing with friction or wear, the simple 
Coulomb’s law of friction is always drawn upon, 
even until today: friction force is proportional to 
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normal force with an empirical coefficient of friction 
that is dependent only on the material pairing. It    
is no secret that this law is only a very rough 
approximation. The coefficient of friction can change 
by a factor of 4 or more for the same material pairing, 
dependent on normal force, contact configuration, 
speed, and roughness. However, there exist no reliable 
simulation strategies that allow for the friction force 
to be calculated for specific systems. The main reason 
for this lies in the multi-scaled characteristics of the 
friction phenomenon. For example, a monolayer of 
impurity atoms on a metal surface changes both 
friction and wear dramatically. On the other hand, 
the contact mechanics of real surfaces is controlled by 
spatial scales differing by many orders of magnitude. 
In particular, the plastic behavior will be different on 
different spatial scales. The same problems arise in 
simulation of rubber: the rolling resistance and the 
wear in this material can be caused by spatial and 
time scales differing by about 10 orders of magnitude 
because of spatial and frequency dependence of the 
rheological properties of rubber. A correct simulation 
of such systems must take all of these scales into 
account. The multi-scale nature of tribological systems 
begins with the fractal character of their roughness. 
Since Bowden and Tabor [1], one knows that surface 
roughness plays a decisive role in tribological 
contacts. Already in the 50’s of the 20th century it 
became clear that many surfaces of interest (e.g., 
fracture surfaces, wear surfaces, or surfaces produced 
with typical manufacturing methods) are fractal 
surfaces showing roughness on all scales from atomic 
to macroscopic [2, 3]. This leads to the sensitivity of 
the contact properties on small scales to those on 
larger scales and finally to the dependence of friction 
both on macroscopic loading conditions and processes 
occurring on the smallest microscopic scale [4, 5].  

The current processing speeds of modern computers 
are far from sufficient to simulate contact and friction 
phenomena for real surfaces while considering all 
relevant scales. Therefore, it is important to search  
for simulation methods which accept the loss of 
information about parts of the system but allow for a 
small number of especially meaningful macroscopic 
quantities to be quickly calculated. This technique is, 
of course, in no way new and is actually the tried and 

true method that science has followed since its 
inception. In the field of contact mechanics for real 
surfaces, one such possibility provides the method of 
reduction of dimensionality (MRD). The method of 
reduction of dimensionality was proposed in 2005  
by Popov et al. [6] in a presentation at a workshop. 
Proceedings of this workshop appeared in 2007 as a 
special issue of Tribology International [7].  

MRD is based on the observation that close analogies 
exist between certain types of three-dimensional contact 
problems and the simplest contacts with a one- 
dimensional elastic foundation. Thereby, it is important 
to emphasize that this is not an approximation: The 
properties of one-dimensional systems coincide exactly 
with those of the original three-dimensional system. 
The price for this reduction is high, but for many 
applications quite acceptable. One obtains the exact 
results only for the relationships between the force, 
the (macroscopic) relative displacement of the bodies, 
and the contact radius. With this, all quantities   
that depend on the force-displacement relationship 
can be calculated. In the area of exact agreement, 
parameters such as the contact stiffness and the 
corresponding electrical resistance [8] and thermal 
conductivity can be found. In the case of elastomers, 
dissipated energy and friction forces also belong to 
this set. The applicability of the MRD was extended 
in 2007 to contacts between randomly rough surfaces 
[9, 10], viscoelastic bodies [11], and frictional problems 
[12−16]. The method has been successfully applied  
to dynamic tangential [17, 18] and rolling [19, 20] 
contacts. An important step was made in 2011 by   
M. Heß, in which he provided a rigorous proof    
for the applicability of the method of reduction of 
dimensionality for arbitrary rotationally symmetric 
bodies [21, 22] both with and without adhesion.  

2  Basic ideas 

We limit our consideration to “typical tribological 
systems” which are characterized by the laws of dry 
friction being approximately met. This implies that 
the real contact area remains much smaller than   
the apparent contact area or the apparent contact 
area is much smaller than the size of the tribological 
system as a whole. For “typical tribological systems,” 
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there is a series of properties that allow for immense 
simplification of the contact problem and in this way, 
allow quick calculation even in multi-scaled systems. 
The simplifying properties used in the reduction 
method are the following [5]: 

(a) For velocities much smaller than the speed of 
sound, deformations in the relevant vicinity of the 
contact area determining the contact forces can be 
treated as quasi-static. 

(b) The potential energy, and therefore, the force- 
displacement relation, is a local property that depends 
only on the configuration of the surfaces at the 
distances of the order of magnitude of the size of the 
contact area and not on the form or size of the body 
as a whole. The locality does not mean that the elastic 
coupling of different points in the contact area is not 
considered. 

 (c) The kinetic energy, on the other hand, is a 
“global property” that depends only on the form  
and size of the body as a whole and not on the 
configuration of the micro-contacts. 

The last two properties mean that the “elastic 
properties” and the “inertia properties” are completely 
decoupled, the first being purely microscopic and the 
latter, purely macroscopic. The above three properties 
are found in many macroscopic tribological systems. 
The application area of the subsequent methods is, 
accordingly, very wide.  

Another crucial property of contacts between three- 
dimensional bodies is the close similarity between 
these contacts and certain one-dimensional problems. 
The fundamental ideas of this analogy are presented 
in the following. If a cylindrical indenter is pressed 
into the surface of an elastic continuum (Fig. 1a), then 
the stiffness k of the contact is proportional to its 
diameter D [5]: 

 *k DE                   (1) 

Where *E  is the effective elastic modulus  

  
 

2 2
1 2

*
1 2

1 11
E E E

              (2) 

1E  and 2E  are the Young’s moduli of contacting 
bodies, and 1  and  2 , their Poisson-ratios. The 
proportionality of the stiffness to the diameter can be 

reproduced using a one-dimensional elastic foundation 
(Fig. 1b). In order to fulfill Eq. (1), the stiffness per 
unit length must be chosen as *E . Every individual 
spring must have the stiffness 

  *
zk E x                  (3) 

where x  is the distance between the springs of the 
elastic foundation and z is the vertical coordinate.  

The tangential stiffness of a three-dimensional contact 
is also proportional to the diameter of the contact [5]: 

 *
xk DG                  (4) 

where 

  
 1 2

*
1 2

(2 ) (2 )1
4 4G G G

           (5) 

1G  and 2G  are the shear moduli of the contacting 
bodies. For the same reasons as in the case of a normal 
contact, the tangential contact can be replicated using 
a one-dimensional elastic foundation. The tangential 
stiffness of individual springs in the elastic foundation 
must be chosen according to 

  *xk G x                 (6) 

Note that throughout this paper, we assume that the 
contacting materials satisfy the condition of “elastic 
similarity” 

  
1 2

1 2

1 2 1 2
G G

              (7) 

guaranteeing the decoupling of the normal and 
tangential contact problems [23]. In particular, this 
condition is always satisfied in the important case of 
the contact between a rigid body and an incompressible 
elastomer (both sides of Eq. (7) are then zero). 

 
Fig. 1  (a) Contact of a rigid cylindrical indenter with an elastic 
half-space and (b) its one-dimensional representation. 
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3  The rule of Geike & Popov and the rule 
of Heß for normal contacts 

Amazingly, the contact with an elastic foundation 
defined with Eq. (3) gives correct force-displacement 
relations not only for cylindrical indenters but also 
for a large class of simple surface profiles. However, 
the surface profile must be modified according to some 
simple rules. For parabolic (or spherical) profiles, the 
rule was given by Geike and Popov [9]. They have 
shown that the relations between force, indentation 
depth, and contact radius of a spherical indenter  
with radius R pressed into a half-space (Fig. 2a) can 
be reproduced exactly with a contact with a one- 
dimensional elastic foundation (Fig. 2b) by changing 
the radius. If a “sphere” with the radius 1R  is brought 
into contact with the elastic foundation (penetration 
depth d), then the following contact quantities result: 
The contact radius is equal to 

 12a R d                   (8) 

and the normal force is  

 N 
*

3
1

4 2
3

EF d R d             (9) 

If we choose a radius  

1 / 2R R                 (10) 

then the Eqs. (8) and (9) coincide exactly with Hertzian 
theory. The Eq. (10) means that the cross-section of the 
three-dimensional profile is stretched by the factor of 
2 in the vertical direction (Rule of Geike & Popov). 

In 2011, Heß showed that the exact mapping of con- 
tact problems to one-dimensional elastic foundations 

is possible for arbitrary bodies of revolution [21, 22]. 
If a body of revolution is described by the equation 
 ( )z z r , then a one-dimensional profile 

   
d





1 2 2
0

x

D
z r

z x x r
x r

          (11) 

in contact with an elastic foundation defined by Eq. (3) 
will have exactly the same contact properties as the 
original three-dimensional contact. In the case when 
the three-dimensional profile is described by a power- 
function  

( ) = n
nz r c r                (12) 

the equivalent one-dimensional profile is a power- 
function with the same power, but a modified 
coefficient: 

  d


 


 
1

1 n n2 2
0

c c
x n

n
D

nrz x x r x
x r

       (13) 

where 

  n n nc c                 (14) 

and  

d
  



 
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 

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2 20

( )
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nn        (15) 

 ( )n is the Gamma-function 




   1

0

( ) n tn t e dt              (16) 

In particular, for a cone (  1n ) we get  1 / 2  and 
for a parabolic profile (  2n ) 2 2 . Note that the 
power n  is an arbitrary positive number (it does not 

 

Fig. 2  Contact of a spherical indenter with a half-space and its one-dimensional representation. 
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need to be an integer). 
The general reason for the possibility of mapping 

three-dimensional contacts with bodies of revolution 
onto one dimension is simple, and it is instructive to 
discuss it. Let us first consider a rigid indenter having 
the form described by a power law 

( ) n
nz r c r                (17) 

which is pressed to a depth d  into an elastic half- 
space. The unit of the coefficient nc  is   1 nm . As the 
equilibrium equations of elasticity do not contain any 
quantities with the dimension of length, it follows 
from dimensional analysis that the contact radius a  
can only be a function of the indentation depth of  
the form 

   1 (1 )n
na c d               (18) 

with an arbitrary constant exponent  . On the other 
hand, if the Eq. (17) is stretched in the horizontal plane 
by a factor of C ( r r C ) and at the same time in  
the vertical direction by the factor of nC (  nz z C ), 
then the profile does not change at all. The contact  
radius in the new coordinates scales as 1C  and the 
indentation depth remains unchanged. From Eq. (18), 
it follows that  1 nC C  and   1/ n . Thus, the 
contact radius should be a power function of the 
indentation depth of the form 

  1// n
na d c                (19) 

Once the dependence of the contact radius on the 
indentation depth is known, the dependence of the 
normal force follows straightforwardly. Indeed, the 
differential contact stiffness depends only on the 
current configuration of the contact and is given by 
the same equation as for a cylindrical indenter (see 
Ref. [5] or Ref. [24] for the proof): 

N



*2F aE

d
                (20) 

With Fomula (19), it follows that  

 
 



*
1/ 1 1/2

1 1/
n n

N n
EF c d

n
           (21) 

In the one-dimensional case, it is trivial to see that 

both Fomula (19) and Eq. (20) remain valid. Thus, the 
power law (21) is valid as well, and it is only the 
question of the correct vertical scaling to obtain exactly 
equivalent results. The scaling coefficient can only 
depend on the power n . The existence of a linear 
mapping for an arbitrary power-function means that, 
for a general profile, the function must have the form 
of a linear integral transformation. The form of this 
transformation is given by Eq. (11). 

To illustrate the simplicity and the efficiency of the 
method of reduction of dimensionality, let us consider 
a contact of a flattened parabolic indenter  


  



0
2 2

0
0

0,   r
( )

,   a
2

a
z r r a r

R
           (22) 

with an elastic half-space; 0a  is here the radius of the 
flattening. The corresponding one-dimensional profile 
is given by Eq. (11): 

 

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

0
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0

0,   

,
D
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        (23) 

The interrelation of the indentation depth d  and the 
contact radius a  is given by the condition  

 


 
2 2

0
1D

a a a
d z a

R
           (24) 

The normal force is then equal to  

d    
*

* 2 2 2 2
1 1 0 0

0

2( ) 2 ( ( ) ( )) (2 )
3

a

N D D
EF a E z a z x x a a a a
R

 

(25) 

The Eqs. (24) and (25) are exact solutions for the three- 
dimensional contact first found by Ejike in 1981 [25]. 

4  Stress distribution in the contact area 

Heß further found that the pressure distribution in a 
real three-dimensional contact can be reconstructed 
from the linear force density    ( ) /q x f x x , found 
in the one-dimensional model, where  f x  is the 
normal force in a spring having the coordinate x . 
According to Heß, the pressure distribution is given 
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by the Abel transformation [21, 22]: 

d


 
   


 2 2

( )1 ( ) ( )zz
r

q x
p r r x

x r
       (26) 

For example, in the case of a cylindrical indenter,  
the force density ( )q x  is constant inside the contact 
interval: 

 
 N 

  

/ 2 ,      
0,                   
F a x a

q x
x a

        (27) 

Therefore,    N       ( ) ( )
2
Fq x x a x a

a
 and Eq. (26) 

gives 

 

 

dN

N

 



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


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r

x a x aFp x
a x r

F r a
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r a

       (28) 

which is exactly the stress distribution in a three- 
dimensional contact with a cylindrical indenter of 
radius a (see, for example, Ref. [23]). Similarly, for the 
parabolic case, the force density in the one-dimensional 
case is calculated trivially to be 

     * 2
1 1( ) / 2 ,    for  2q x E d x R x a R d   (29) 

For the derivative, we get   *
1( ) /q x E x R . Substitution 

into Eq. (26) gives 

 

d d

 





 
 

   
 

 
* *

2 2 2 2
1 1

1/ 2
2*2 1 /

a

r r

E x x E x xp
R Rx r x r

dE r a
R

      (30) 

which is exactly the result for the Hertzian problem. 
As the last example, let us consider the contact between 
a conical indenter with the slope   and an elastic 
half- space. The force density is calculated as 

 
 

     
 

* 2( ) tan ,    for  
2 tan

dq x E d x x a    (31) 

For the derivative, we get     *( ) sgn( ) tan
2

q x E x . 

Substitution into Eq. (26) gives  

             


2* *

2 2

tan tan ln 1
2 2

a

r

E dx E a ap
r rx r

   

(32) 

This result coincides with the exact stress distribution 
in a contact with a conical indenter [24]. 

Equation (26) gives the exact stress distribution, not 
only in these simple classic cases but for arbitrary bodies 
of revolution, provided the rule of Heß (Eq. (11)) has 
been applied for modification of the profile.  

5  Normal contacts with adhesion 

Heß succeeded in 2011 in generalizing the reduction 
method to adhesive contacts of elastic solids. He 
considered the boundary of adhesive contact as a 
Griffith’s crack [26] in an ideally elastic body. His ar- 
gument was very simple and elegant: It is known that 
the stress distribution in an adhesive contact described 
by the classical JKR theory [27] is a superposition of a 
pressure distribution with a parabolic indenter and a 
negative stress distribution by the “rigid pulling” of 
the contact area. As both of these contact problems can 
be mapped exactly onto one dimension, this should 
be valid for the entire adhesive problem as well. The 
rule of Heß for adhesive contacts is the following: If 
we first press a modified indenter (Eq. (11)) into the 
elastic foundation and then pull it off as shown in 
Fig. 3, then the springs will detach when the following 
critical elongation is achieved [21, 22, 28]: 


  12

max *

2( ) al a
E

            (33) 

Note that this criterion is non-local, as it depends on 
the actual radius of the contact region. 
As a simple example let us consider an adhesive 
contact between a rigid cylinder with a radius a and 
elastic half-space (Fig. 4). In this case, all springs will 
detach at the instant in which all of them achieve the 
critical elongation (33). The total normal force which 
must be applied to achieve this state is just  


 * * 312

12*

22 8A
aF aE E a
E

        (34) 

which is also the exact three-dimensional result for 
this adhesive problem [21].  
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Fig. 4  The one-dimensional equivalent system for the adhesive 
contact between a rigid cylinder and an elastic half-space. 

As a second example, let us calculate the adhesion 
force with a conical indenter with the slope  . The 
vertical displacement of the springs with coordinate 

x  is now   ( ) tan
2

u x d x . The contact radius is 

given by the condition   max )( ) (lu aa , resulting in 


 

  12
*

2tan
2

d a a
E

           (35) 

The normal force is given by  

* *
*

dN

  
       

   


2
12

0

22 tan tan 2
2 2

a aaF E d x x E a
E
  (36) 

Its minimum value is AF  with  

A


 


2
12

* 3

54
tan

F
E

             (37) 

which coincides with the solution of the 3D adhesive 
contact problem [21]. 

Similar calculations for a parabolic profile would 
lead to the classical JKR result  A   123 / 2F R .  

Application of the rule of Heß (Eq. (33)) provides 

not only exact adhesive forces for an arbitrary body 
of revolution but also the complete force-displacement 
dependence and force-contact radius dependence. 
The proof can be found in Refs. [21, 22]. The above 
formulation of the adhesive contact is, however,  
only applicable to a contact of elastic bodies. For 
viscoelastic bodies, the idea of treating an adhesive 
contact as a crack can be used too, but the process  
zone in the vicinity of the crack opening should be 
considered in detail, as first done by Prandtl [29]. A 
more detailed discussion of adhesion in elastomers 
can be found in Ref. [30]. Application of the method 
of reduction of dimensionality to viscoelastic adhesive 
contacts is described in Ref. [31].   

Adhesive properties (adhesion force and adhesion 
coefficient) of contacts between elastic bodies with 
rough surfaces have been investigated in Ref. [32]. 
The authors constructed adhesion maps showing the 
dependence of adhesive properties on the roughness, 
rms slope of the surface, elastic modulus, surface 
energy, and fractal dimension. 

6  Tangential contact 

In this section, we would like to illustrate the app- 
lication of the method of reduction of dimensionality 
using an example of a tangential contact with friction. 
A parabolic body is initially pressed into an elastic 
half-space with the normal force NF  and subsequently 
tangentially loaded with a force xF  (Fig. 5). It is 
assumed that the friction between the bodies can be 
described using the simple Coulomb’s law of friction 
with a constant coefficient of friction. Due to the fact 
that at the edges of the contact area, the normal force 

 

Fig. 3  Adhesive contact during the pressing and detaching phases. 
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Fig. 5  Tangential contact with friction with a parabolic body.  

in the springs disappears, a sliding domain exists here, 
while in the center of the contact area, as long as the 
tangential force is not too large, the surfaces stick. We 
denote the radius of the sticking domain with c .  

The vertical displacement of a spring at a distance 
x from the center of the contact is 

 
2

1

( )
2z
xu x d
R

             (38) 

and the resulting spring force is 

N

 
     

 

2
* *

1

( ) ( )
2z
xf x E u x x d E x
R

       (39) 

The contact radius is determined from the condition 
( ) 0zu a , and according to this, is equal to 

 12a R d                 (40) 

We denote the horizontal displacement of the parabolic 
indenter relative to the substrate as xu . Then, the 
force acting on a spring which sticks to the substrate 
is equal to 

    *( )x x x xf x k u G x u          (41) 

The boundaries of the sticking region are determined 
from the condition that the tangential force reaches the 
maximum possible value for the static friction force: 

N( ) ( )xf c f c              (42) 

or  


 

     
 

2
* *

12x
cG x u d E x
R

         (43) 

From this, it follows that 


 

  
 

*
2

1 *2 xuGc R d
E

           (44) 

Solving for xu  results in 


 

  
 

* 2

*
12x

E cu d
G R

             (45) 

The sliding in the remaining regions means that 
Coulomb’s law of friction is fulfilled in these regions: 

N  ( ) ( ),   if xf c f c c x a          (46) 

We now calculate the normal and tangential forces 
in this state. The normal force results in the Hertzian 
result: 

 dN



 
    

 


2 * 3
1/ 2* * 3 / 2
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4 22
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a
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x E aF d E x E R d
R R

    

(47) 

The tangential force is calculated as 

d d

N



 

 
   

 
               
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2
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3

c a

x x
c

xF G u x d E x
R

E a c cF
R a a

    (48) 

From this, the relationship for the radius of the stick 
area results [5]: 

N
 

  
 

1/ 3

1 xFc
a F

               (49) 

which coincides with the three-dimensional result [5]. 
The maximum displacement until the point of com- 

plete sliding is given by Eq. (45) through the insertion 
of  0c : 

 
*

,max *x x
Eu u d
G

             (50) 

and is likewise identical to the three-dimensional 
result. 

It can be easily shown that the Abel-transformation 
(Eq. (26)) provides the correct stress distribution in a 
true three-dimensional tangential contact also in this 
case. The (tangential) force density is given in this 
case by the following relations: 

 

  

   
   


 

2
*

1
*

- ,      
2

,                
0,                     

x
x

xd E c x a
Rq x

G u x c
x a

      
(51)
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In the sticking part of the contact, the force density is 
constant and can be represented as the difference bet- 
ween two force functions       1 2xq x q x q x , where 

   

   






 
   

 
  

     
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2 *
* 2 2

1
1 1

* 2 *
* 2 2

1 *
1 1

-
2 2

-
2 2

x

x Eq x E d a x
R R

G u x Eq x E d c x
E R R

  (52) 

From this, it follows immediately that the three- 
dimensional stress distribution will be a difference 
between two “Hertzian-like” stress distributions, which 
is really the case in a true three-dimensional system 
[33, 34].  

In 1995, Jäger [35] succeeded in showing that an 
arbitrary axial-symmetric tangential contact problem 
with friction can be mapped identically to the cor- 
responding normal contact problem in the framework 
of the Cattaneo-Mindlin theory [33, 34]. This means 
that the exact mapping of 3D problems to those of one 
dimension is valid for tangential contacts of arbitrary 
bodies of revolution.  

7  Frictional damping in an oscillating 
tangential contact 

If the tangential load is oscillating, this leads to the 
slip in the area in the vicinity of the border of the 
contact area and to frictional damping. In this section 
we consider the frictional damping of an oscillating 
contact of a parabolic elastic body in contact with   
a rigid plane. We apply the method of reduction of 
dimensionality and show that the resulting energy 
dissipation is exactly the same as in the true 3D 
problem (solved in Ref. [36]).  

Consider a spring with a normal stiffness zk  and 
tangential stiffness xk , which is pressed against a 
rigid plane so that the approach is equal to  . Assume 
a coefficient of friction   between the spring and the 
plane. Now let the “free end” of the spring oscillate 
tangentially with an amplitude A  (from A  to A ). 
If the condition  

N    x x zF Ak F k            (53) 

is fulfilled, then there is no relative movement between 
the spring and the plane and there is no energy 

dissipation. If however, the amplitude is larger then cA :  

 
 



   


2

2 1
z

c
x

kA
k

          (54) 

then the spring will stick until the displacement cA  
is achieved and slip during the further part  cA A . 
In the following, we carry out the calculation for the 
case   1/ 3 : 

   
5
4

z
c

x

kA
k

             (55) 

During one period of oscillation, the sliding distance 
will be  4 cA A . The dissipated energy is equal to 
the work of the force of friction and is equal to  

    4 c zW A A k             (56) 

Now let us apply this result to an oscillating contact 
of a parabolic indenter and a plane in the framework 
of the method of reduction of dimensionality, using 
the Eqs. (3), (4) and (10). The dissipation due to only 
one spring of the elastic foundation at the position x  
is equal to 

  

 

   

    
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54
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x xE A d d x
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   (57) 

Integrating over all gliding springs gives the dissipated 
energy  
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(58) 

For small amplitudes A , the dissipated energy can be 
developed in the Taylor series:  


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    (59) 
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In particular, the first non-vanishing term gives  

        
 

2
* 1/ 2 1 1/ 2 3 * 1/ 2 1 1/ 2 32 4 0.42

3 5
W E R d A E R d A    

(60) 

For an arbitrary Poisson number, we would have  

 


     

2
* 1/ 2 1 1/ 2 32 2(1 )

3 2
W E R d A        (61) 

which is exactly the 3D result obtained by Mindlin et 
al. [36]. 

8  Viscoelastic contacts and thermal effects 

For viscoelastic bodies such as rubber, the contact can 
be seen as quasi-static when the penetration velocity 
and the sliding velocity are smaller than the smallest 
speed of sound (which corresponds to the smallest 
modulus of elasticity). If this condition is met and an 
area of an elastomer is excited at a frequency  , 
then there is a linear relation between the force and 
displacement with stiffness that is proportional to  
the contact radius. Hence, this system can also be 
presented using a one-dimensional system, where 
the stiffness of the individual springs must be chosen 
according to (3). Rubber can be considered to be an 
incompressible medium so that   1/ 2  and for a 
contact between a rigid indenter and a rubber half- 
space, the stiffness must be chosen to be 

       
 

 
 

        
 

*
2

2
4

1 1z
E G

k E x x x G x     

(62) 

The corresponding relation for forces in the time 
domain reads 

d


     ( ) 4 ( ) ( )
t

zf t x G t t z t t          (63) 

Where ( )G t  is the time dependent shear modulus [5]. 
For tangential contacts, the stiffness must be chosen 

according to Eq. (6): 

     


 


      


* 4 8
2 3x
G

k G x x G x      (64) 

The corresponding force relation in the time domain 
reads 

d


     8( ) ( ) ( )
3

t

xf t x G t t z t t          (65) 

The validity of the mapping of three-dimensional 
contacts onto a one-dimensional viscoelastic foundation 
is further based on the equivalence of surface profiles 
for all media with linear rheology at a given indentation. 
Let us illustrate this important topic by comparing the 
indentation of an elastic and a viscous medium. The 
surface profile is determined unambiguously by the 
equilibrium equation of the medium and the (linear) 
stress relation on the surface. For an elastic medium, 
the equilibrium relation reads 

       
 ( ) 0G u G u            (66) 

where     2 / 1 2G  is the first Lame-coefficient 
[37]. The corresponding “equilibrium equation” for a 
linearly viscous fluid is the Navier-Stokes equation 
without inertia terms [38]: 

         
  ( ) 0u u              (67) 

In the case of an elastic continuum, the stress is a linear 
function of the gradients of the displacement field u , 
while in the case of a fluid, the same is valid for the 
gradient of the velocity field u . The same form of 
equations (after substitution of the displacement field 
with the velocity field) implies that all relations which 
are valid at a given contact configuration for an elastic 
continuum for force-displacement relations will be 
valid for a viscous medium for force-velocity relations. 
The incremental changes in contact configuration 
and indentation depth do not depend on elastic 
properties of the medium – this is seen very clearly in 
the fact, that the contact radius in the Hertz problem 
a Rd  does not depend on elastic moduli. This leads 

straightforwardly to the conclusion that at the given 
indentation depth, the configurations of an elastic 
and of a viscous medium are strictly identical. This is 
valid not only for rotationally symmetric profiles, but 
also for arbitrary profiles, however, only during the 
indentation phase. It was first Radok who found  
this property and used it for developing the contact 
mechanics of viscoelastic media [39]. 
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Finally, let us note that the stationary equation of 
thermal conductivity  

  0T                 (68) 

(  is the Laplace operator here and in Eqs. (66) and 
(67)) is of the same form as the equations of elasticity 
(66) and for fluid dynamics (67). The same is valid  
for equations of electrical conductivity. This leads to 
a close connection between the elastic properties  
and some electrical and thermal properties [8]. For 
example, the electrical contact conductance   is 
linearly proportional to the incremental stiffness: 

 N  


   


*
1 2 / 2Fk E

d
 [8], where 1  and 2  are 

the resistivities of the contacting bodies. Electrical 
and thermal properties can, therefore, be integrated 
into the method of reduction of dimensionality in a 
natural and simple way.  

9  Normal contacts with rough surfaces 

An important question is whether the method of 
reduction of dimensionality is restricted to the bodies 
of revolution or can be applied to a broader class of 
surface topographies, above all to that of the contact 
of rough surfaces. The importance of roughness was 
first stressed by Bowden and Tabor [1]. It was a hot 
topic in the 50s and 60s during the 20th century [2, 40] 
and remains an important research topic until now 
[41−46]. Numerical simulations of contacts between 
rough surfaces costs very much computation time and 
are one of the main reasons why numerical simulation 
methods are not used until now in engineering 
tribology. We will show below in this section that there 
are empirical and theoretical reasons to state that the 
method of reduction of dimensionality is applicable at 
least to randomly rough fractal surfaces as well, thus, 
providing a practical tool for the rapid simulation of 
contact problems. The validity of this hypothesis was 
first studied in Ref. [9]. However, from the present-day 
perspective, the results reported in Ref. [9] are only 
partially correct and must be generalized.   

In order to cross over to a contact between bodies 
with rough surfaces, a rule for the production of a 
one-dimensional profile, which is equivalent to the 
three-dimensional body in a contact mechanical  

sense, must be formulated. As a motivation for this 
replacement, we use a few ideas from the model of 
Greenwood and Williamson [40]. The results and 
quality of the replacement system, however, prove  
to be more general than the Greenwood-Williamson 
model. In particular, the method of reduction of 
dimensionality allows contacts from the limit of very 
small forces to the complete contact to be modeled. 

In the model of Greenwood and Williamson, the 
individual contacts are considered to be independent 
from each other. Under these conditions, only the 
distribution of the heights of the asperities and the 
radii of curvature play a role. So, our goal is first to 
generate a one-dimensional system, which has the 
necessary statistical distributions of heights and radii 
of curvature. To simplify matters, we assume that the 
topographies of both the two-dimensional surface (of 
a three-dimensional body) and of its one-dimensional 
mapping can be unambiguously characterized by their 
power spectra  2DC q  and  1


DC q , which are defined 

according to 
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(69) 

where  h x  is the height profile taken from the 
average so that  0h ;   means averaging over the 
statistical ensemble. Furthermore, we assume that the 
surface topography is statistically homogeneous and 
isotropic. Under these conditions, the power spectrum 

 2DC q  is only dependent on the magnitude q  of the 
wave vector q .  

Many technically relevant surfaces are fractal self- 
affine surfaces [4]. These surfaces have a spectral 
density obeying a power law:  
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H

D
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D

q
C q

q

q
C q

q

    (70) 

where H  is the Hurst exponent ranging from 0 to 1 
[4]. It is directly related to the fractal dimension of an 
original two-dimensional surface  3fD H .  
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The surface topography is calculated with the help 
of the power spectrum according to 

       
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for two-dimensional surfaces and with 
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h x B q i qx q
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    (72) 

for one-dimensional lines, with random phases 
      
 q q  on the interval  0 2 . 

In order to produce a one-dimensional system with 
the same contact properties as the three-dimensional 
system, the following rule for generating the one- 
dimensional power spectrum was proposed in Ref. [9]: 

   1D 2DC q qC q             (73) 

Qualitative arguments for this rule are the following: 
The averages of the squares of the heights for the two- 
dimensional and one-dimensional cases, respectively, 
are 

 d


 2
2D2D

0

2h qC q q            (74) 

and 

 d


 2
1D1D

0

2h C q q             (75) 

They are the same when    1D 2DC q qC q . The 
corresponding root mean squares of the surface 
gradient  2z  and curvature  2  also coincide  
in this case (For two-dimensional cases, we define 
  2 (1) (2) , where  (1)  and  (2)  are the principal 
radii of curvature of the surface.). Note that the Hurst 
exponents of both one- and two-dimensional surfaces 
coincide as well. This last property is very important 
and allows an analytical substantiation for the app- 
licability of the method of reduction of dimensionality 
to randomly rough surfaces to be given. From our 
present point of view, Eq. (73) must be replaced by a 

more general relation:  

   1D 2D( )C q H qC q             (76) 

where ( )H  is a coefficient which depends on the 
Hurst exponent (see details below in this section). 

Let us illustrate the applicability of the method of 
reduction of dimensionality using the example of 
normal stiffness of bodies with rough surfaces. Stiffness 
of fractally rough surfaces without long wavelength 
cut-off has been investigated in Ref. [45]. Consider a 
cylindrical rigid indenter with diameter  2L a , having 
a self-affine fractal surface described by Eq. (70). If it is 
pressed into an elastic half-space, first the tallest peak 
comes into contact and finally, at a very large normal 
force, complete contact will be achieved. In this final 
state, the contact stiffness is equal to  *

,maxzk E L . 
Now, we use the Eq. (76) of the surface power 
spectrum and generate a rough line according to 
Eq. (72), having the length L . This choice of length 
guarantees automatically that the maximum stiffness 
at the complete contact will exactly coincide for 
three- and one-dimensional cases. Furthermore, we 
concentrate our attention to the region of small forces 
and incomplete contact. It was shown in Ref. [45]  
that there are several rigorous scaling relations  
which the dependence of contact stiffness Nk  and the 
normal force must fulfill. These scaling relations lead 
to the following general form of the stiffness-force 
dependence, both for the one- and three-dimensional 
case:  

N


    
 * *

k F
E L E hL

             (77) 

where   is a constant exponent and   is a constant 
coefficient; both of them may only depend on the 
Hurst exponent. 

There are analytical considerations supporting  
the power law dependence of the contact stiffness 
and the strict equivalence of three-dimensional and 
one-dimensional results for small fractal dimensions 
[46]. For fractal surfaces without long wavelength 
cut-off, the surface has a pronounced non-planarity 
on the largest scale. Therefore, the contact at small 
contact forces is localized in the vicinity of only one 
point of apparent contact area. Now, let us make the 
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following transformation of the surface:  

 

 
 

H

L CL
h C h
d d

                (78) 

According to the definition of a self-affine surface, 
this transformation provides the same surface (or a 
surface with the same statistical properties) as long 
as the real contact spot is inside the initial size of  
the system. This means that Eq. (78) lets the complete 
“contact state,” including the contact force and contact 
stiffness (defined as  /F d ), remain unchanged:  

 
 

F F
k k

                 (79) 

Substitution of the Eqs. (78) and (79) into (77) gives  

 

1

1 H
                (80) 

These arguments do not depend on the dimensionality 
of the system and are valid for both the initial three- 
dimensional contact and its one-dimensional mapping. 
The constants   may, of course, be different, but 
can easily be adjusted — just as in the case of simple 
rotationally of symmetric bodies — with a universal 
scaling factor, which depends only on the Hurst 
exponent and must be determined once empirically 
with large-scale direct simulations. This has already 
been done in Ref. [46].  

MRD, thus, produces correct asymptotic depen- 
dences of the contact stiffness of self-affine fractal 
surfaces as well — both in the limit of very small  
and very large loads. Comparisons of the statistical 
scattering of contact properties depending on particular 
realization also coincide in both cases, which gives 
the possibility of applying the method of reduction of 
dimensionality to the study of fluctuation of contact 
properties (e.g., in the problem of rolling noise [20]). 

Self-affine surfaces are often investigated in the 
range of  0 1H , but Eq. (70) does not naturally 
impose such a restriction. In Ref. [48], the contact 
stiffness was investigated in the range of Hurst 
exponents from  1H  to  3H . In each case,  
the contact stiffness was found to rise with the force 
according to a power law, Eq. (77). The values of  

the exponent   found from direct 3D simulations 
are shown in Fig. 6 by blue crosses. What could be 
mistaken as a fitting curve of the 3D results in Fig. 6 is 
actually the independent raw data from the simulations 
with the method of reduction of dimensionality (red 
line). 

So far, we considered fractal surfaces without 
roll-off. However, the results of surfaces with roll-off 
are effectively included in the picture shown in  
Fig. 6. Indeed, a spectral density with a broad roll-off 
region (constant power density) corresponds formally 
to  1H , which is the left uppermost point in the 
range of Hurst exponents investigated here.  

The conversion factor ( )H  in Eq. (76) depends 
generally on the Hurst Exponent. The dependence of 
( )H on the Hurst Exponent implies that the general 
rule for any spectral density (not only the self-affine 
type) will be an integral transformation of the form 

d


   1 2( ) ( ) ( , )D D
q

C q C q K q q q          (81) 

Where  ,K q q  is a homogeneous function of argu- 
ments q  and q  of zero order. The exact form of this 
integral transformation is not yet known. 

Until now, we considered randomly rough surfaces, 
which are flat at the average. It was shown in Ref. [48]  

 
Fig. 6  The exponent   from Eq. (77) as a function of the Hurst 
Exponent of a rough surface. The blue crosses are the results of 
3D boundary element simulations; the red line was obtained using 
the method of reduction of dimensionality. (Source: Ref. [49]) 



54 Friction 1(1): 41–62 (2013) 

 

that the method of reduction of dimensionality is also 
applicable to combined profiles (e.g., a rough parabolic 
indenter). 

10  Force of friction 

10.1  Sliding friction force between an elastomer 
and a rigid rough surface 

Friction between rough solid surfaces is of considerable 
importance in many applications. In the present 
paper we confine ourselves only to the consideration 
of friction between a rigid rough surface and an 
elastomer with linear rheology. We do not consider 
adhesion, which can also contribute to friction [50]. 
As discussed above, the force-displacement relations 
in this case are described correctly by the method of 
reduction of dimensionality. We will illustrate this 
with two examples. Grosch first established that the 
friction of elastomers is determined by the internal 
losses in contacting bodies and is, hence, closely 
related to the rheology of these materials [51]. Simple 
analytical estimations [5] show that the coefficient of 
friction between an elastomer and a rough solid 
surface obeys the following relation: 

 


 
( )

ˆ ( )
G kvz
G kv

              (82) 

Where z  is the mean square slope (gradient) of the 
solid surface profile  ( , )z z x y , ˆ ( )G  is the frequency 
dependent complex shear modulus of the elastomer, 

( )G  is the imaginary part of this complex quantity, 
k  is the characteristic wave vector of the solid surface 
profile, v  is the relative velocity of sliding,   is a 
dimensionless constant on the order of unity, and 

ˆ ( )G  is the modulus of the complex shear modulus. 
Since Eq. (82) is derived on the basis of qualitative 
considerations, the exact value of a constant   is 
unknown and can only be determined by means of 
numerical simulations. 

Eq. (82) acquires a simpler form, provided that the 
complex shear modulus is purely imaginary (or its 
imaginary part is much greater than the real part). 

Then, the ratio 



( )
ˆ ( )

G
G

 is unity and Eq. (82) reduces to 

  z                  (83) 

In Ref. [12], it was proven by direct numerical simu- 
lation that this relation is valid for fractal surfaces with 
the coefficient   being approximately 1.  

The more general Eq. (82) was validated in Refs. [13] 
and [16]. There, the time dependent modulus of the 
form  

d






    
2

1

0 1 1( ) tsG t G G e          (84) 

has been used with 0 1 MPaG , 1 1000 MPaG , 
  2

1 10  s ,   2
2 10  s , and  2s . This dependency 

is characterized by a broad spectrum of relaxation 
times ranging from 210  s to 210  s. The results of 
numerical simulation using Eq. (63) is presented 
together with the analytical estimation Eq. (82) in Fig. 7. 
One can see that the numerical simulation reproduces 
the three-dimensional estimation very well. However, 
as there are no exact three-dimensional calculations 
for the force of friction, it is not possible to decide   
if the small discrepancy is due to the inaccuracy in 
the one-dimensional numerical simulation or to the 
inaccuracy in the three-dimensional estimation.  

 

Fig. 7  Dependence of the friction coefficient for a contact of a 
two-dimensional rough, non-fractal surface with a half-space 
exhibiting the linear rheological law Eq. (84). The solid line is 
estimation Eq. (82) and the dots, the numerical simulation using 
the method of reduction of dimensionality. 
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10.2  Dependence of the static friction force on the 
normal force 

Amonton’s law for dry friction (proportionality of the 
force of friction to the normal force) is known to be 
only a first rough approximation. The more detailed 
models for the dry friction force are of very high 
scientific and technical importance. In this section we 
illustrate an approach to this problem based on the 
method of reduction of dimensionality. The results  
of this section follow Ref. [14]. Imagine, for example, 
a viscoelastic body which is characterized by some 
elasticity and viscosity. If a rigid rough body is 
pressed onto such a body and is held under this force 
for a long time, then the contact configuration will 
only depend on the elastic modulus of the medium. 
If the body is now moved rapidly in the tangential 
direction, then it will react as a viscous body and the 
instantaneous coefficient of friction will be just of the 
order of magnitude of the instant rms value of the 
surface slope [5]. This consideration shows that a 
correlation must exist between the coefficient of friction 
and the true instant rms value of the surface slope.  
In the following we investigate the dependence of  
the average slope in the contact region of an elastic 
continuum and a rough rigid body. It will give us, at 
least qualitatively, the dependence of the static friction 
force between a rigid body and an elastomer on the 
normal force. As many technical surfaces of interest 
are self-affine fractal surfaces, we will investigate this 
class of rough surfaces. In Ref. [14], an elastomer block 
of a length L was considered. One dimensional rough 
lines were produced according to the rule Eq. (72) 
with a power spectrum Eq. (70). The summation in 
Eq. (72) was over the wave vectors in the interval  

 
 


1

10
q

L x
             (85) 

where  /N L x  is the total number of discretization 
points. The relation Eq. (85) means that there is no 
cut-off wave vector at the lower limit of the interval 
apart from the natural cut-off due to the finite size of 
the system. On the other side, at the upper limit there 
is a cutoff wave vector which guarantees that the line 
is smooth enough even at the smallest scale. This 
profile is brought into contact with the above defined 
elastic foundation and pressed with the total normal 
force F (see Fig. 8). 
After the penetration depth has been acquired 
numerically for a given normal force, the mean slope 
of the single line in places of contact was calculated: 

cont
      

2
1 only for points in contact

( ) ( ) ,  i iz x z xz
x

   

(86) 

The rms gradient found in this way was averaged 
over 300 realizations of the rough line with the same 
spectral density. To characterize the surface, the rms 
value of the height distribution  

 2( )h z x                (87) 

and the rms value of the surface gradient over the 
whole system 

     2/z z x              (88) 

were introduced. 
There are several strict scaling relations which 

must be fulfilled independent of the particular form 
of the spectral density. If the rms value of the height 

 

Fig. 8  Fractal line in contact with discretized elastic foundation. 
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distribution as well as the indentation depth is 
increased by some factor, both gradients (86) and (88) 
as well as the normal force will increase by the same 
factor. For the given contact configuration, the force 
must be proportional to the elastic modulus. We fulfill 
both requirements if we introduce the dimensionless 
variables  

cont




z

z
                 (89) 

 *

Ff
E hL

                  (90) 

and search for a function  ( )f . 
One example of the numerical simulation is shown 

in Fig. 9.  
For the most typical values of H  around 0.7 , the 

following relation has been derived: 

   ln( )a b f                (91) 

with  2.9a  and  0.14b . Thus, the dependence of the 
rms gradient value on the force can be written as 

cont        *2.9 0.14 lnz F
z E hL

         (92) 

Increasing the force by a factor of 500 changes the rms 
gradient (and, therefore, the coefficient of friction) by 
a factor of 3 to 4. This is in accordance with the 
strong dependence of the coefficient of friction on  
the normal force observed in many experiments (see, 
for example, Ref. [52]). According to the method of  

 
Fig. 9  Dependence of the dimensionless mean slope in contact on 
the dimensionless normal force. Curves are shown for  510N , 
 510L ,  1H , * 1E  and number of realizations  300t . 

The force F goes from 1 to 500. For  500F , the average number 
of points in contact is 40. The simulation returns  1.5289a  and 
 0.0614b  for the natural logarithmic fit (gray line). 

reduction of dimensionality, these results should be 
valid for three-dimensional systems as well, provided 
the length of the system is replaced by  2 /L A , 
where A is the apparent area of contact: 

cont   
      

*2.9 0.14 ln
2

z F
z E h A

        (93) 

This relation shows that the coefficient of friction has 
only weak, logarithmic dependence on the argument 


*2

F
E h A

. This is the reason, why it can be considered, 

in a first approximation, to be a constant. In the higher 
approximation, however, it depends on the normal 
force, the apparent contact area A, the roughness, and 
the material properties (e.g., *E ). 

11  Objections to the method of reduction 
of dimensionality and its area of 
application  

First, we remember that MRD in the present 
formulation is only applicable to systems with linear 
rheology. Furthermore, it is only valid in the half- 
space approximation just as the majority of results   
in contact mechanics obtained so far. The possibilities 
of extending the method to non-linear (including 
elastoplastic) contacts by applying the method in the 
incremental form have not yet been studied.  

It must be stressed that the equivalence of the con- 
tact properties of a true 3D system and its 1D substitute 
in the method of reduction of dimensionality does 
not relate to all properties of the contact but only to 
its macroscopic response to external forces. MRD can 
be applied if the macroscopic contact forces are of 
interest. Many such situations are described in Ref. [53]. 
That the force-displacement relations are described 
correctly by the reduction method has been proven 
(either analytically or by numerical simulations) for 
any sort of self-affine surfaces (both in the form of 
single contacts or randomly rough surfaces) and  
can be considered now as a solid foundation of the 
method. Furthermore, in the case of axis-symmetric 
surfaces, the method is true for non-self-affine surfaces, 
and we hope that this will be the case for any randomly 
rough surfaces as well.  
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Surely, there are many properties which cannot be 
described in the framework of the method of reduction 
of dimensionality, for example, spatial correlation 
functions of stresses or displacements. In many cases, 
however, we are interested not in the detailed spatial 
distribution of forces but only in the macroscopic 
response of a system. This is by no means a new 
concept but rather the usual direction in which physics 
is going in description of macroscopic systems. Thus, 
we use the notion of the pressure of a gas if we are not 
interested in the true (and extremely nonhomogeneous, 
both temporarily and spatially) structure of forces 
caused by molecular impacts. The same is true for  
the contact mechanics, where the macroscopic force- 
displacement response delivers the most important 
information, which is needed for engineering app- 
lications. The force-displacement relations determine 
the contact stiffness and, in this way, the dynamic 
properties of a tribological system; they determine the 
statistical properties of the contact forces and, thus, 
the noise due to rolling or sliding; they determine  
the work done by the external forces and, thus,    
the frictional forces and damping; they determine   
the thermal production, conduction, and electrical 
conductivity. Outside the realm of the macroscopic 
reaction to the force action, the method of reduction 
of dimensionality generally cannot be applied. 

An exception when much more detailed information 
can be obtained in the framework of the reduction 
method, is that of axis-symmetric contacts. In the 
case of single axially-symmetric contacts, the method 
can also be used for calculation of the contact area 
and the stress distribution in the area of real contact. 
This is, however, not true for randomly rough surfaces. 
In Ref. [9], the simple transformation rule Eq. (73) has 
been suggested and it was claimed that it is possible 
to correctly determine the contact area from the 1D 
simulations. From the present point of view, the 
transformation Eq. (73) is not completely correct; the 
coefficient in this equation is in reality not equal to 
  but depends on the Hurst exponent. The claim to 
correctly describe the contact is also not completely 
correct. While the initial linear asymptote in the 
dependence of the contact area on normal force is 
described correctly, it becomes rapidly incorrect at 
larger forces. That the contact area and the contact 

stiffness cannot be both described correctly by the 
reduction method follows immediately from the 
well-known property that the saturation value of the 
contact stiffness is achieved in macroscopic systems 
much earlier than the complete material contact [5]. 
In Ref. [9], the size of the system was accidentally 
chosen in such a way that the area-force dependence 
was correct up to relatively large contact. This result, 
however, cannot be generalized. 

The main objection to MRD, which is repeated 
again and again over years, is that the 1D substitute 
system has no interrelations between springs of the 
elastic foundation and, thus, cannot describe the 3D 
original having such correlations. This objection is 
based on the errant mental image of the 1D substitute 
system as a sort of a spatial cross-section of the 3D 
topography. In reality, the 1D system is not a cross- 
section; it has another dimension and topology. The 
neighboring points of the 3D system cannot be 
identified in the 1D substitute system, and thus, the 
elastic coupling loses its sense. The 1D system must 
rather be considered as an abstract model, which  
has no immediate intuitive interrelation with the 
original 3D system. In MRD, we are only interested 
in the macroscopic response of the system. There   
is no mathematical theorem preventing a “partial 
equivalence in the sense of forces” of a 3D system 
with elastic coupling and a 1D system without such 
coupling. This can be seen already from the scaling 
considerations leading to the conclusion of equivalence. 
The incorrectness of the “no-coupling-argument” 
follows immediately from the exactness of the method 
of reduction of dimensionality when applied to the 
axisymmetric bodies. For these bodies, the same is 
valid as for any arbitrary contact: the 3D system has 
spatial correlations and the 1D does not. This, however, 
does not prevent the method of being applicable to 
this class of contacts. Obviously, the elastic coupling 
of the 3D system is correctly taken into account by 
both the changed dimensionality and the modified 
indenter profile. 

12  Discussion 

The described method of reduction of dimensionality 
maps a three-dimensional contact problem to one of 
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one dimension. This leads to a drastic reduction in 
the computation time and trivialization of analytical 
calculations. The reduction which is achieved by this 
method is two-fold: First, a system, whose degrees of 
freedom correspond to a three-dimensional space, is 
replaced by a system with the same linear size, whose 
degrees of freedom correspond to a one-dimensional 
space. The second, equally important reduction is 
that a system with interacting degrees of freedom is 
replaced by a system with independent degrees of 
freedom. This property opens the possibility of further 
reduction of calculation time by parallel processing 
of independent degrees of freedom. A possibility of 
such replacement seems at first glance miraculous, but 
was rigorously proved for at least two classes of surface 
topographies: (a) for arbitrary bodies of revolution 
and (b) for randomly rough fractal self-affine surfaces. 
The mapping is no approximation, but is exact. The 
time reduction for realistic systems of technical interest 
is at least six decimal orders of magnitude, thus, 
opening completely new possibilities in numerical 
simulation of contacts with real topography. In 
particular, it becomes possible to incorporate the 
microscopic simulations directly (in each time step) 
into a macroscopic simulation of the system dynamics 
and, thus, really close the gap between the micro- 
and macro-world for many classes of tribological 
problems.  

Table 1 summarizes the rules of the method of 
reduction of dimensionality. The horizontal arrows 
show the rules for the replacement of axisymmetric 
contacts by one-dimensional single contacts and of 
rough surfaces by one-dimensional “rough lines.” It 
is interesting to note that a further reduction is 
possible. As the force-displacement relations for the 
randomly rough self-affine surfaces and axisymmetric 
profiles with the same Hurst-Exponent ( H n ) are 
described by power-laws with the same power, 
displacement of fractal surfaces by simple rotationally 
symmetric profiles is possible, as long as we are only 
interested in the ensemble averaged dependencies. 
This reduction is shown in Table 1 by dashed arrows. 
It is described in more detail in the book [48]. 

Coming back to the problem of linking the scales 
in contact and friction mechanics, we would like    

Table 1 Equivalences and transformation rules of the 
method of reduction of dimensionality. 

 

to illustrate the place of the method of reduction of 
dimensionality by means of the schemes shown in 
Fig. 10 and Fig. 11 [54]. It is important to stress that 
the power spectrum of typical surfaces has no gaps  
in the wave vector space. This means that a clear 
separation of “macroscopic” and “microscopic” scales 
is principally impossible for frictional systems and 
the separation is always more or less arbitrary. A 
typical “engineering approach” (Fig. 10a) is to choose 
the wave vector separating the “macroscopic” and 
“microscopic” scales just at the scale of the system  
as a whole. The macroscopic scale is then described 
explicitly with certain “one-scale” methods, such as 
finite elements. The entirety of the rest of the system 
dynamics is not described explicitly. Instead, one 
attempts to describe this part of the system dynamics 
with a proper “law of friction.” It is no wonder that 
this “law of friction” is highly system dependent. On 
the other hand, very many attempts have been made 
to calculate the force of friction starting from some 
“microscopic” model. The authors of such theories 
choose a scale that they consider to be the most 
important for the system considered and calculate 
the dynamics explicitly on this scale. The result is a 
contribution to friction stemming from the chosen 
scale (Fig. 10b). Even if such an approach may allow 
for a qualitative understanding of friction at the chosen 
scale, it will never have quantitative predictive power. 
Finally, there are many scientists studying the frictional 
forces at the molecular scale (Fig. 10c), omitting all 
intermediate scales. 
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Fig. 11  “Filling in the gap” between “macro” and “micro”. 

One of the possibilities to “fill in the gap” between 
the “macro scale” and the “micro scale” (between 0q  
and 1q  in Fig. 10c) is illustrated in Fig. 11. The 
strategy shown in this figure is to define three scale 
intervals: the macroscopic scale of the system as a 
whole (characterized by the wave vector 0q ) is still 
the scale which must be explicitly simulated. On the 
other hand, we define a much smaller “microscopic 
scale” (characterized by the wave vector 1q ), which 
we cannot describe explicitly due to some reasons 
(lack of material parameters, surfaces parameters, 
and so on). The contribution from the smallest scale 
is considered to be “friction at the microscopic  
scale.” For this friction, an empirically measured or 

numerically motivated “law of friction” is needed. 
The scales between these limits must be treated with 
an explicit contact mechanical method which accepts 
the loss of information about parts of the system but 
allows for a small number of especially meaningful 
macroscopic quantities to be calculated fast. In the 
field of contact mechanics for real surfaces, one such 
possibility is the method of reduction of dimensionality. 

The applicability of the method of reduction of 
dimensionality is, of course, restricted to the scales 
where macroscopic continuum mechanics can be used. 
This means that the smallest, atomic scale cannot be 
incorporated into the method directly. However, as 
already mentioned above, it is possible to summarize 
the interactions on the smallest scale to a pheno- 
menological friction, which must be introduced 
additionally as an empirical frictional law. In Ref. [55], 
it was shown that the boundary between macro- and 
micro-description can be shifted continuously in a 
sort of renormalization group, which gives different 
laws of friction at different scales. What the method 
of reduction of dimensionality really does is shifting 
this boundary between micro and macro to the smallest 
possible scale, at which a mechanical description of a 
material fails. It is interesting to analyze whether it  
is principally possible to introduce interactions of  
the type of the Prandtl-Tomlinson model [56] or its 
extensions for boundary lubrication [57] on the smallest 
scale, thus, providing a link between macroscopic 
tribology and atomic scale tribology [58]. All of these 
topics are matters for future research. 

 

Fig. 10  Typical paradigms in the physics of friction: (a) “The world of an engineer” — the scale separation occurs immediately at the 
largest scale of the system as a whole. (b) “The world of a friction physicist” — only one intermediate scale is chosen and is simulated. 
(c) “The world of a molecular physicist” — only the molecular level is considered. 
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As proposed already in the Ph.D thesis by T. Geike, 
other reduction methods are also possible. For 
example, some equivalences can be found by replacing 
a three dimensional contact by a contact with a 
homogeneous 2D medium or a 2D medium, which 
Young modulus is an arbitrary power function of the 
depth [59]. A more detailed analysis of such “partial” 
reduction methods has been done for arbitrary bodies 
of revolution in Ref. [21] and for randomly rough 
surfaces in a recent paper [60]. 
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